
m i c r o s e r v i c e s

THE HUNTING OF THE SNARK

2

Chapter 0
The “London school of software
engineering”

3

CONSULTANTS!
HELL YEAH!

5

6

BDD

7

8

9

“So our core microservice article got 45,144 unique page views last month, and
is currently running at 1837 per day” @martin

10

11https://www.thoughtworks.com/radar/

12

Chapter I

The architects dream

Airline problems with: monolithic databases ~ 2010

Retail
Site

Departure
Control

Retail
Site

Departure
Control

Retail
Site

Departure
Control

Retail
Site

Departure
Control

48 Cores

256 GB RAM (NUMA)

~ $1 x 106 per machine

18

Airline

Tightly coupled

Single point of scaling

Single point of failure

Expensive to change

High operational cost

High cost of failure

20

Retail
Site

Departure
Control

Retail
Site

Departure
Control

Retail
Site

Departure
Control

Retail
Site

Departure
Control
X

BACK IN 2004 (ISH)

22

BACK IN 2004 (ISH)

23

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

The stovepipe enterprise

Stovepipes)are)“systems)procured)and)developed)to)solve)a)specific)problem,)
characterized)by)a)limited)focus)and)func:onality,)and)containing)data)that)
cannot)be)easily)shared)with)other)systems.”)(DOE)1999))
DOE.%Commi*ee%to%Assess%the%Policies%and%Prac7ces%of%the%Department%of%Energy,%Improving%Project%
Management%in%the%Department%of%Energy,%Na7onal%Academy%Press,%Washington,%D.C.,%1999,%page%133.%

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

HR

UI

"Middleware DB"

? ? ?

Data Warehouse

?

canned reports cubes / ad-hoc

UIUI

UI

Finance

UI

Views of
external

Data

Read only
external

data

Read only
external

dataDirect db access

Direct db access

Direct db access

Direct db access
Direct db access

Direct db access

Direct db access

Direct db access

SSO

UI / Service

AD

Direct db access

Direct db access

?

Logic scattered all over the place

Data scattered all over the place

Difficult to predict the effect of changes

Where are the sources of truth?

BI / MI almost impossible to get at

Insurance - 2011

+∆ features -∆ features

Activity Activity Activity

3d 1.5d 0.5d

10d 30d2d

extremely high cost of delay

Summary of CTM

• basically
–High cost of delay:

• long lead times
• Project teams
• Long lived branches and awful merges

• (very coupled so stamping over each others
code)

36

problems thereof

• High cost of change
–sufficiently complex systems become more coupled

over time
• Martin’s tech debt quadrant

• High operational cost
• Lead time to business impact

37

38

SAW
2011

TIME PASSES…

39

Java
the UNIX way

fine-grained
SOA

programmer
anarchy

MORE TIME PASSES…

MORE TIME PASSES…

40

EVEN FINANCE IS NOT IMMUNE

41

42

Chapter 2

What are Microservices?

“loosely coupled service oriented
architecture with bounded contexts”
Adrian Cockcroft, GOTO Aarhus 2014

44

“the first post-devops architectural style”
Neal Ford

45

replaceable component architectures
Dan North

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

“It is perfectly true, as philosophers say, that life
must be understood backwards. But they forget the
other proposition, that it must be lived forwards.”
Søren Kierkegaard

this is the problem

50

History
The lawful good product owners of
the publishing house had long lived
in awe and fear of their publishing
systems.

In awe, for they had made a
tremendous amount of Gold, but in
fear of the time taken to change
them, their slowness and their
fragility.

A messenger was sent to fetch help
from a distant land famed for it’s
mighty wizards. You have taken up
the challenge…

link to close

link hello

 close

51

1.
You must save the product owners by
rebuilding their content delivery
system. You start off the project. In
the course of discussions you
discover that your goals are three
fold:

1. improve availability
2. improve performance
3. reduce the cost of delay

An Enterprise Architect approaches
and addresses you.

You may use:

Summon Walking Skeleton

?

turn to 4

Analysis Paralysis turn to 3

If you have none of these you will
have to draw your sword and fight
(turn to 178)

link to close

link hello

 close

52

3.

You cast Analysis Paralysis at the
Enterprise Architect.

“Foolish young adventurer” says the
architect, “we follow the evolutionary
school of architecture and we shall
have none of the lawful-evil ways of
waterfall”.

The last thing you see before
everything goes dark is the architect
incanting in a strange voice.

You have died. Turn to page 1.

link to close

link hello

 close

53

1.
You must save the product owners by
rebuilding their website. You start off
the project . In the course of
discussions you discover that your
goals are three fold:

1. improve availability
2. improve performance
3. reduce the cost of delay

An Enterprise Architect approaches
and addresses you.

You may use:
S3

Summon Walking Skeleton

?

turn to 4

Analysis Paralysis turn to 3

If you have none of these you will
have to draw your sword and fight
(turn to 178)

link to close

link hello

 close

54

4.

Your walking skeleton coalesces in a
cloud of noxious gasses and solidifies
as a java dropwizard application.

You reach into your backpack and
deploy the content store. Your
walking skeleton reaches out it’s
skeletal arms and grabs armfuls of
raw xml.

Would you like to:

S3Transform the xml inside
the skeleton turn to 6

Use a magic box turn to 5

link to close

link hello

 close

55

5.
You throw the magic box in between
the walking skeleton and the content
store.

A villager approaches and exclaims:
“this beautiful content I see in front
of me seems to take an awful long
time to get here”

You must somehow make the
content arrive faster.

If you have a http cache in your
inventory, you may use it now.

S3
Cache in between S3

and content turn to 10

content

Cache in between
skeleton and content turn to 33

link to close

link hello

 close

56

6.
The skeleton gurgles, grunts and
then doubles in size.

A villager approaches and exclaims:
“this beautiful content I see in front
of me seems to take an awful long
time to get here”

You try to add a cache into the
skeleton’s bony skull. First you cast
sticky sessions. With a splash it
rebounds, soaking you in the stench
of the unscalable.

Desperately, you try terracotta and
then the oracle of coherence.
Nothing seems to work. The murky
substances overwhelm you.

You have died. turn to page 1.

link to close

link hello

 close

57

10.
The cache causes the content load
times to drop from 300ms to 150ms.

The villager says “this wonderful
content is now arriving more swiftly
than even the knight-messengers of
the Empress”.

The villagers are happy but all too
soon, all is not well for the content
has a long tail. You must work out
how to refresh the content when it
changes.

You can either:

Refresh the content when
it appears from the ether turn to 150

Trust that it will be fast
enough on first view turn to 22

link to close

link hello

 close

58

22.

The tail is just too long. When
villagers or merchants try to use the
content it is just too slow to arrive.

The amount of Gold diminishes and
over the years the village fades into a
forgotten hamlet, then to a legend
and a myth.

You have died, turn to page 1.

link to close

link hello

 close

59

150.
Content trickles into the store. You
keep up by listening for the new
content and casting “wget” on the
cache to keep it refreshed.

New types of content appears -
content the villagers have never seen
before. Content the walking skeleton
is unable to combat.

Fortunately, through Continuous
Delivery you are able to keep up with
the changed content but the cache
doesn’t. The cache becomes stale.

How will you keep your delivery
continuous?

cast cache shards turn to 255

If you are unable to shard the cache
turn to page 48

link to close

link hello

 close

60

33.
The HTTP cache has an instant effect.
Latency drops from 300ms to 10ms.

Changes to the content mount up.
Every time one of the lawful-good
researches publishes something, the
cache must be refreshed. Every time
the skeleton changes it’s appearance,
the cache must be refreshed.

The vi l lagers need you to do
something. Will you:

link to close

Suffer the long tail turn to 22

Refresh the cache on API
and content changes turn to 150

link hello

 close

61

4.

Your walking skeleton coalesces in a
cloud of noxious gasses and solidifies
as a java dropwizard application.

You reach into your backpack and
deploy the S3 content store. Your
walking skeleton reaches out it’s
skeletal arms and grabs armfuls of raw
xml.

Would you like to:

Transform the xml inside
the skeleton turn to 6

Use a magic box turn to 5

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

64

A capability is a combination of people, processes, systems
that provides value to customers (internal or external)

The what of the business, not the how

65

Commercial
property

Residential
property

The Money

property company

66

Billing Forecasting

The Money

67

insurance company

home motor life

insurance company

and cross-cutting capabilities

home motor life

my account

70

Each capability decomposed into smaller sub-domains
based on your functional and cross-functional needs

How big are they?

Object

Object

Object

Object

Object

“objects should be no bigger than my head”

AND WHILE I HAVE A GIANT HEAD, ITS NOT FULL OF MUCH
STUFF SO THATS OK...

Object

Object

Object

Object

Object

AS WE CHUNK UP DOMAINS, EACH DOMAIN SHOULD BE
SMALL ENOUGH TO FIT IN MY HEAD

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

The Web

http://www.flickr.com/photos/photophilde/4527076709/

“be of the web, not behind the web”

87

Ian Robinson, author, REST in Practice

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

pmo
ops

testers
developers

THE BUSINESS

pmo
ops

testers
developers

THE BUSINESS

insurance company

insurance company

separate lines of business

home motor life

separate lines of business

and cross-cutting capabilities

home motor life

my account

cross-functional teams delivering lines of business

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

100

military

Share tools, don’t enforce standards

MAKE IT EASY TO DO THE RIGHT THING

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

105

monolith - single database microservices - application databases

Capabilities own their own data

(can be cached elsewhere with

appropriate policies)

106

what about transactions in this model?

107

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

109http://ferd.ca/beating-the-cap-theorem-checklist.html

http://ferd.ca/beating-the-cap-theorem-checklist.html

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

113

compile, unit
 and

functional test

integration
test

acceptance
test

user acceptance
test

performance
test

deploy to
production

run on build
machine

deployed on
build

machine

deployed to
integration

environment

deployed to
UAT

environment

deployed to
performance
environment

Fast Feedback

More Confidence

phoenix infrastructure

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

116

“it pushes the accidental complexity
into the infrastructure”
Martin Fowler

117

“Every socket, process, pipe, or remote
procedure call can and will hang. Even
database calls [...]”

M. Nygard, “Release It”

118

Chapter 3
Some (un)expected consequences

119

be cheap to replace

microservices should allow us to go as
“fast as possible”

be deployable on demand

be resilient on imperfect networks

but it’s not as simple as that

120

https://www.flickr.com/photos/futurowoman/2923992303

https://www.flickr.com/photos/futurowoman/2923992303

121

Monitoring

Deployment

Testing

Organisational Structure

Integration

Architectural Safety

How big are they?

How many can you support?

How big are they?How big are they?

How many can you support?

123

Consider a single application - its a website, lets call it A

A

124

we want to get A into production and since we are hipsters we are going to practice continuous delivery - we will have a full
automated build pipeline

compile, unit
 and

functional test

integration
test

acceptance
test

deploy to
production

run on build
machine

deployed on
build

machine

deployed to
integration

environment

124

we want to get A into production and since we are hipsters we are going to practice continuous delivery - we will have a full
automated build pipeline

Tappety tap

compile, unit
 and

functional test

integration
test

acceptance
test

deploy to
production

run on build
machine

deployed on
build

machine

deployed to
integration

environment

124

we want to get A into production and since we are hipsters we are going to practice continuous delivery - we will have a full
automated build pipeline

Tappety tap

compile, unit
 and

functional test

integration
test

acceptance
test

deploy to
production

run on build
machine

deployed on
build

machine

deployed to
integration

environment

125

How many environments do we need?

126

How many environments do we need?

compile, unit
 and

functional test

integration
test

acceptance
test

deploy to
production

run on build
machine

deployed on
build

machine

deployed to
integration

environment

127

OK, so we are going to be cool and use microservices

A B

128

and we might as well call them something interesting

webapp customers

129

and they have a dependency on one another…

webapp customers

130

How do we traditionally make sure that new versions of the
services work with each other?

Let me illustrate this

131

V1

V1

131

git push origin master

V1

V1

131

V2

git push origin master

V1

V1

131

V2

git push origin master

V1

V1

131

V2

git push origin master

V1

V1

131

V2

git push origin master

V1

V1

131

V2

git push origin master

V1

V1

132

V2

V1

What should V2 of the blue app be tested against here

133

V1

This is in production, so presumably we should test against this?

134

V1

V1

134

git push origin master

V1

V1

git push origin master

134

V2

git push origin master

V1

V1

V2

git push origin master

134

V2

git push origin master

V1

V1

V2

git push origin master

134

V2

git push origin master

V1

V1V2

git push origin master

134

V2

git push origin master

V1

V1V2

git push origin master

134

V2

git push origin master

V1

V1V2

git push origin master

135

I’m sorry Dave, I can’t let you do that
I’m sorry Dave, I can’t let you do that

136

136

137

Locks == Delay

138

V1

V1

s

s

V1

V1

139

140

140

141

2 services

4 environments
=>

142

2 services

142

2 services
4

142

2 services
4

>600

143

integration environment

the death of the

144

144

http://james-iry.blogspot.com.au/2009/05/brief-incomplete-and-mostly-wrong.html

145

A capability is a combination of people, processes, systems
that provides value to customers (internal or external)

The what of the business, not the how

146

delivering stuff selling stuff

The problem with projects

146

delivering stuff selling stuff

The problem with projects

146

delivering stuff selling stuff

The problem with projects

146

delivering stuff selling stuff

The problem with projects

146

delivering stuff selling stuff

The problem with projects

147

If you aren’t really careful with your API design

your beautiful microservices end up in a tangled, coupled mess

Feature
starts
 dev

iteration
2

iteration
1

iteration
3

Feature
deployed

regression testing
performance testing

deployment tests

cycle time

6 week periods of “hardening”

deploying everything all at once

write
spec

write
code

test release

Without deploying into production,
inventory is built up - inventory costs
money and the more we have the more
risky our deployments

?

150

beware the
distributed
monolith!

151

https://xkcd.com/1629/

154

The Boojam!

Large organisations tend to be “functionally split” for efficiency reasons

Throw away integration testing? Are you made?

We suddenly need a whole new set of skills

Many use scrummerfall or project based teams

Design for failure

Architectural safety

Zookeeper?!?

155

Chapter 4
Facing these consequences

156

It is not possible to get the benefits
of microservices without serious organisational change

158

“…organizations which design systems … are constrained to produce
designs which are copies of the communication structure of those
organizations”
Melvyn Conway, 1968

The mirroring phenomenon is consistent with two rival causal mechanisms. First,
designs may evolve to reflect their development environments. In tightly-coupled
organizations, dedicated teams employed by a single firm and located at a single site
develop the design. Problems are solved by face-to-face interaction, and performance
“tweaked” by taking advantage of the access that module developers have to
information and solutions developed in other modules. Even if not an explicit
managerial choice, the design naturally becomes more tightly-coupled.

By contrast, in loosely-coupled organizations, a large, distributed team of volunteers
develops the design. Face-to-face communications are rare given most developers
never meet. Hence fewer connections between modules are established. The
architecture that evolves is more modular as a result of the limitations on
communication between developers.

159

http://www.hbs.edu/faculty/Publication%20Files/08-039_1861e507-1dc1-4602-85b8-90d71559d85b.pdf

"Exploring the Duality between Product and Organizational Architectures : A Test of the “Mirroring” Hypothesis"

loosely-coupled organizations ⇒ the architecture is more modular

160

tightly-coupled organizations ⇒ the design becomes more tightly-coupled.

161

Lines of
business

161

Lines of
business

162

Value streams

162

Value streams

163

teams

163

teams

each team
owns one or more services

~10-20

~160-200
~10-20

~160-200
~10-20

multiples thereof

166
Thomas J. Allen, 1977

167

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.10

0.15

0.20

0.25

0.30

m

Probability of
weekly interaction

x

x x

xx
xxxxxxxxx

x x
x

x x
x x

The effect of distance on communication

co-locate as much as possible

take advantage of serendipitous conversations

169

169

169

Good Monitoring

169

Good Monitoring

Fast Remediation

169

Good Monitoring

Fast Remediation

QA

169

Test in production

Good Monitoring

Fast Remediation

QA

170

170

170

SEMANTIC MONITORING

171

Customer
ServiceWeb Shop

171

Customer
ServiceWeb Shop

Expectations

171

Customer
ServiceWeb Shop

Expectations

171

Customer
ServiceWeb Shop

Expectations

171

Customer
ServiceWeb Shop

Expectations

Consumer Driven Contracts

172

production != live

blue / green deploys

canary releases

infrastructure as code

My hypothesis is that you can use organisational
boundaries to reason about which testing patterns to apply
and which integration patterns to use

176

The “chunking up from microservices to
teams to value streams to lines of

business to organisations" practice
onion*

*I might need a better name for this

between organisational boundaries

Low change rate

High stability

Semantic Versioning

Tolerant Reader

typically requires:

178

Higher change rate

Lower stability

Semantic Versioning
Contract Testing
Tolerant Reader

between business capabilities

179

between teams

Higher rate of change

Lower stability

Semantic Versioning
Contract Testing
Tolerant Reader

180

within teams

Highest rate of change

Lower stability

Conversational change

Tolerant Reader

181

FINAL THOUGHTS

182

183

1. Rule of Modularity: Write simple parts connected by clean interfaces.
2. Rule of Clarity: Clarity is better than cleverness.
3. Rule of Composition: Design programs to be connected to other programs.
4. Rule of Separation: Separate policy from mechanism; separate interfaces from engines.
5. Rule of Simplicity: Design for simplicity; add complexity only where you must.
6. Rule of Parsimony: Write a big program only when it is clear by demonstration that nothing

else will do.
7. Rule of Transparency: Design for visibility to make inspection and debugging easier.
8. Rule of Robustness: Robustness is the child of transparency and simplicity.
9. Rule of Representation: Fold knowledge into data so program logic can be stupid and

robust.
10. Rule of Least Surprise: In interface design, always do the least surprising thing.
11. Rule of Silence: When a program has nothing surprising to say, it should say nothing.
12. Rule of Repair: When you must fail, fail noisily and as soon as possible.
13. Rule of Economy: Programmer time is expensive; conserve it in preference to machine

time.
14. Rule of Generation: Avoid hand-hacking; write programs to write programs when you can.
15. Rule of Optimization: Prototype before polishing. Get it working before you optimize it.
16. Rule of Diversity: Distrust all claims for “one true way”.
17. Rule of Extensibility: Design for the future, because it will be here sooner than you think.

183

1. Rule of Modularity: Write simple parts connected by clean interfaces.
2. Rule of Clarity: Clarity is better than cleverness.
3. Rule of Composition: Design programs to be connected to other programs.
4. Rule of Separation: Separate policy from mechanism; separate interfaces from engines.
5. Rule of Simplicity: Design for simplicity; add complexity only where you must.
6. Rule of Parsimony: Write a big program only when it is clear by demonstration that nothing

else will do.
7. Rule of Transparency: Design for visibility to make inspection and debugging easier.
8. Rule of Robustness: Robustness is the child of transparency and simplicity.
9. Rule of Representation: Fold knowledge into data so program logic can be stupid and

robust.
10. Rule of Least Surprise: In interface design, always do the least surprising thing.
11. Rule of Silence: When a program has nothing surprising to say, it should say nothing.
12. Rule of Repair: When you must fail, fail noisily and as soon as possible.
13. Rule of Economy: Programmer time is expensive; conserve it in preference to machine

time.
14. Rule of Generation: Avoid hand-hacking; write programs to write programs when you can.
15. Rule of Optimization: Prototype before polishing. Get it working before you optimize it.
16. Rule of Diversity: Distrust all claims for “one true way”.
17. Rule of Extensibility: Design for the future, because it will be here sooner than you think.

the 17 rules of UNIX programming

185

never done

185

“This, milord, is my family's axe. We
have owned it for almost nine
hundred years, see. Of course,
sometimes it needed a new blade.
And sometimes it has required a
new handle, new designs on the
metalwork, a little refreshing of the
ornamentation . . . but is this not
the nine hundred-year-old axe of
my family? And because it has
changed gently over time, it is still a
pretty good axe, y'know. Pretty
good.”

never done

186

The Rule of Diversity
the 16th rule of unix programming

DISTRUST ALL CLAIMS FOR “ONE TRUE WAY”

187

jalewis@thoughtworks.com

@boicy

Thanks!

