Thought\\orks:

THE HUNTING OF THE SNARK

Chapter O

The “London school of software
engineering”

Thought\Vorks:

HELL YEAH!
74 //

c

CONSULTANTS!

Thought\Vorks:

Thought\\orks:

v
e Sjddesorn /Yrdéy /tym)/«la y /I
‘Q\\\ F"“'Q ;,,‘/
: N - Xonrh

' R EFACTORING "+

£
>
h.’{ l‘\

CONTINUOUS
DELIVERY

| DATABASES

Jez HumBLE
Scorr W. AMBLER

DAVID FARLEY = Jez Humble, Joanne Molesky & Barry 0'Reilly PRAMOD J. Sapatacr: HETIRN

VAT

A Wonang, A GROWING
= [l A ENTERPRISE < B OBJECT-ORIENTED
‘ S()FTWARE,

INTEGRATION ™ GUIDED BY TESTS
PATTERNS _
STEVE FREEMAN

- | S AL NN
Adopting Continuous Dt ‘\mf !

Delivery, DevOps, and
Building

Lean Startup at Scale
: :
Microservices
Dtsacunmér FINEV-;R-MVNEC;;YSTEMS | : -7(; /— i l)"‘\'lnlll"-R NS OF

= 5 ENTERPRISE
APPLICATION
ARCHITECTURE

GREGOR HoOnPpi
Bossy WooLs

REST in Practice

MARTIN FOWLER

TECHNOLOGYRADAR | ™=

Languages &

Platforms Frameworks

Q Search A-Z FAQs

® ADOPT

1. Decoupling deployment from release & New or moved Q
® No change

2. Products over projects

3. Threat Modeling a é

® TRIAL

4. BFF - Backend for frontends

5. Bug bounties

6. Data Lake

7. Event Storming

8. Flux 7 243
9. Idempotency filter

10. iFrames for sandboxing

11. NPM for all the things

12. Phoenix Environments é
13. QA in production
14. Reactive architectures 6
® ASSESS
HOLD ASSESS

15. Content Security Policies new
16. Hosted IDE's

Unable to find something you expected to see? Your item ma
17. Hosting PIl data in the EU new gy P y

have been on a previous radar »

18. Monitoring of invariants

19. OWASP ASVS new

20. Serverless architecture new
21. Unikernels new

22. VR beyond gaming new

Microservices

The term "Microservice Architecture" has sprung up over the last few years to describe a
particular way of designing software applications as suites of independently deployable
services. While there is no precise definition of this architectural style, there are certain
common characteristics around organization around business capability, automated
deployment, intelligence in the endpoints, and decentralized control of languages and
data.

25 March 2014 Contents
James Lewis Characteristics of a Microservice Architecture
Componentization via Services
James Lewis is a Principal Organized around Business Capabilities
Consultant at Products not Projects
ThoughtWorks and Smart endpoints and dumb pipes
member of the Decentralized Governance

Technology Advisory
Board. James' interest in building
applications out of small collaborating
services stems from a background in

Decentralized Data Management
Infrastructure Automation
Design for failure

integrating enterprise systems at scale. Evo'lutlonar.y Design

He's built a number of systems using Are Microservices the Future?

microservices and has been an active Sidebars

participant in the growing community

for a couple of years. How big is a microservice?
Microservices and SOA

Martin Fowler Many languages, many options

Battle-tested standards and enforced standards
Make it easy to do the right thing

The circuit breaker and production ready code
Synchronous calls considered harmful

Martin Fowler is an
author, speaker, and
general loud-mouth on
software development.
He's long been puzzled
by the problem of how to componentize

“So our core microservice article got 45,144 unique page views last month, and
is currently running at 1837 per day” @martin

Launches
10.000-\
farticles/dont-start-monolith.htmi

. | MlikiMonolithFirst.htmi

g 5,000 \\ | |

e |

g .\‘~

2000- v \
: N\)
Rt \\‘f\ < D \

% m__ “\:‘;_;\,?) ._‘w\\-‘z‘ /\/\\

g 1004 "

o

c . | 3 Y T T 3 T T 1

- 5 10 15 20 25 30 35

weekdays since launch
clear
path plot date total 7 days total 28 days

larticles/doctor-who.htmi plot 2015-06-19
farticles/tor-for-technologists.html plot 2015-06-15 8378
farticles/dont-start-monolith.html plot 2015-06-09 24870
bliki/MonolithFirst.html plot 2015-06-03 67681
Mliki/Yagni.html plot 2015-05-26 50841 63239
/bliki'MicroservicePremium.html plot 2015-05-13 29873 42180
bliki/CodeAsDocumentation.html plot 2015-03-25 5618 8778

hidda e Lol

Aafarcs A AN

i al o

40

peak day

1346
4121
13573
39092
28326
16292
2860

mAac

recent median
1346

786

399

602

19

4nn

microservices

Search term

Interest over time

(4

continuous delivery

Search term

+ Add term

News headlines

Average

Jan 2011

Jan 2012

Jan 2013

Jan 2014

Jan 2015

<D

10

25. High performance envy/web scale envy new

We see many teams run into trouble because they have
chosen complex tools, frameworks or architectures because
they 'might need to scale'. Companies such as Twitter and
Netflix need to be able to support extreme loads and so

need these architectures, but they also have extremely

skilled development teams able to handle the 1. p
Most situations do not require these kinds of ¢ o
&
feats; teams should keep their web scale env, &
. . . . © &

favor of simpler solutions that still get the job ¢ N

— &

& 5 o

https.//www.thoughtworks.com/radar/ o

Chapter |

The architects dream

Airline problems with: monolithic databases ~ 2010

Retail Departure
Site Control

Retail Departure
Site Control

A
\/

Retail Departure
Site Control

Retail
Site

Departure
Control

48 Cores

256 GB RAM (NUMA)

~ $1 x 10® per machine

Airline

A

\

Tightly coupled

Single point of scaling

Single point of failure

N

Expensive to change
High operational cost

High cost of failure

Retail Departure
Site Control

Departure
Control

Departure
Control

eparture
Control

BACK IN 2004 (ISH)

amazoncom

BACK IN 2004 (ISH)

e All teams will henceforth expose their data and functionality through service interfaces.
e Teams must communicate with each other through these interfaces.

e There will be no other form of inter-process communication allowed: no direct linking, no direct reads of
another team'’s data store, no shared-memory model, no back-doors whatsoever. The only
communication allowed is via service interface calls over the network.

e |t doesn’t matter what technology they use.

e All service interfaces, without exception, must be designed from the ground up to be externalizable. That

s to say, the team must plan and design to be able to expose the interface to developers in the outside
world. No exceptions.

The mandate closed with:
“ Anyone who doesn’t do this will be fired. Thank you,; have a nice day! "

Everyone got to work and over the next couple of years, Amazon transformed itself, internally into a service-
oriented architecture (SOA), learning a tremendous amount along the way.

amazZoncom
~—"

23

Thought\Vorks:

Direct db accesé‘

y

=
Ul / Service
_a—
A

\
\

Direct db access
\

N

canned reports

Read only
external
data

cubes / ad-hoc

~

Direct db~access -~

d

Direct db access

d

d

Direct db access

I5ir

N~/

ect db access

~
~

N

~

~
~

Stovepipes are “systems procured and developed to solve a specific problem,

characterized by a limited focus and functionality, and containing data that
cannot be easily shared with other systems.” (DOE 1999)

DOE. Committee to Assess the Policies and Practices of the Department of Energy, Improving Project
Management in the Department of Energy, National Academy Press, Washington, D.C., 1999, page 133.

Direct db accesé‘

y

=
Ul / Service
_a—
A

\
\

Direct db access
\

N

canned reports

Read only
external
data

cubes / ad-hoc

~

Direct db~access -~

d

Direct db access

d

d

Direct db access

I5ir

N~/

ect db access

~
~

N

~

~
~

i
|
|
|
i
|
b

H
|
'
i
'
i
'
'
i
i

Direct db access,
\

\
Direct db access

\

i : Direct db-access, -~
Dirgct db access
Direct db access >~

Direct db access

*

2 |
canned reports cubes / ad-hoc

|

!

H

H
H
o
Direct db access
\

\

\
Direct db access

Direct db-access -~
Direct db access
Direct db access >~

H
|
'
i
'
i
' v
'
'
i
i

\
\

2 | I 2 |
canned reports cubes / ad-hoc

|

!

H

H

H
o
Direct db access,
\

\

\
Direct db ac

i
Direct db access

1
]

j

!

]

!

!

J

!

| \
v Direct db access
Direct db access ~~-_

Direct db access

Direct db access
\

£] I
canned reports | | cubes / ad-hoc

|
|
|
|
|
|
b

Direct db acoess,
\

\

\
Direct db access

Direct db a@sss,r/
Direct db access
Direct db access

H
|

'

i

'

i

'

'

i

i \

|

!

H

H
H
o
Direct db access
\

H
|
'
i
'
i
'
'
i
i

Direct db access

Direct db access >~

'
i
'
i
'
i
!
b

Direct db access
\

H
'
'
|
|
'
|
'
i
i

H

H

H

H
H
j
[
Direct db access
\

\

v

Ul / Service

H
H
H
H
H
j
[
Direct db access

H
'
'
|
'
'
i
'
i
'

'
i
'
i
'
i
!
b

Direct db access

H
'
'
|
|
'
|
'
i
i

Direct db access

2 |
canned reports

»

3]
cubes / ad-hoc

£]
canned reports

=

Direct db access

:]
canned reports

=

3]
cubes / ad-hoc

Direct db-access -~
Diredt db acess
Direot db access

Direct db access

Direct db-access -~

Direct db-access , -~

Dirett db access

Direct db-access -~
Dired db acess
Direot db access
Direct db access

Direx db access
Direct db access ~~~_
Direct db access

Direct db access >~

|
!
H
H
H
|
Direct db access,

\

\

\
Direct db access

P
|
'
i
'
i
' v
'
'
i
i

Direct dbraccess , -~
Dired db access

Direct db access

\
UI/ Service \

Diredt db access

Direct db-access -~~~
Dirext db acoess
Direct db access ~~~._

] I
canned reports | | cubes /ad-hoc

|
|
|
|
|
|
b

Direot db access,

H \ ‘Read only

H \ extemal

i Direct db access data

H \

i \

|

i ,

: Direct db access

| | v e
v \ Diredt db access

Direct db access >~

Direct db access

Direct db access .

2 I 2 |
canned reports | | cubes /ad-hoc

|
!
H
H
H
o
Direct db access,

\ Fead only
external
de

\
Direct db access

Direct dbraccess , -~
Dired db access
Direct db access -

P
|
'
i
'
i
' v
'
'
i
i

Diredt db access

|
!
H
H
H
o
Direct db access,

\

\

\
Direct db access

Direct db-acess -~
Dirext db access
Direct db access

H
|
'
i
'
i
' v
'
'
i
i

\
Ul / Service \

2 | I 2|
canned reports cubes / ad-hoc

|
!
H
H
H
o
Direct db access,

\

\

\
Direct db access

v

|

'
i
'
i
'
'
i
i

v S
Direct db-acgess -~
Direxi db access

Direct db access ~~~..

Direct db access

£] I
canned reports | | cubes /

'
|
'
'
|
'
b

Direct d access,
\

S—
Read only

! external

Direct db access data

\

Dirsif&traqcsgs L’ -
Diredt db access

Directdb access ~~_

i
!

!

|

1

H

|

i ,
: Y Direct db access
v

Direct db access

Direct db access
N

2| I 2|
canned reports | | cubes / ad-hoc

:
'
:
:
!
:
o

Direct db access,
\

Direct db-access -~
Dirext db access
Direct db access

H
|
'
i
'
i
'
'
i
i

Logic scattered all over the place

Data scattered all over the place

\
\

I
1
1
I
I
1
1
I
I

\
\
\

Direct db access
N \
\ Read only

\

\ external AN -
~.. data ~ .. “<. Direct db access
< Nl

~ -1
\\\\\

RN -
Direct db-access , -
NP
Direct db access
Direct db access ~~<
s AN

1
I
I
I
I
1
I
I
I
1
1
I
I
I

y |
g 1]
Ul / Service

< .
~ .
Direct db access
7 T~
. <

AY
Direct db access
\

K

Difficult to predict the effect of changes

g] I 2]
canned reports cubes / ad-hoc

Where are the sources of truth?

Bl / Ml almost impossible to get at

Insurance - 2071

alals

alals

a88880¢
slals . 33880868

a88880¢
slals . 33880868

€ © %

= features

+A features

extremely high cost of delay

3d 1.5d 0.5d

2d 10d 30d

O£ O f ©°

\ Activity) \ Activity / \ Activity)

Summary of CTM

» pasically

—High cost of delay:

*long lead times
* Project teams
» Long lived branches and awful merges

* (very coupled so stamping over each others
code)

problems thereof

* High cost of change

—sufficiently complex systems become more coupled
over time

* Martin's tech debt quadrant
* High operational cost

* Lead time to business impact

38

TIME PASSES...

programmer
anarchy

Java
the UNIX way

fine-grained
SOA

39

MORE TIME PASSES...

MORE TIME PASSES...

amazon
webservices

EVEN FINANCE IS NOT IMMUNE

Atom Our story Newsrooen Qur family Careers Blog : nterested

Ll
! ~ |
Google Wallet sgni
Overview Shop in Stores Send Money Buy Onfine Stay Safe Looking for Android Pay Mondo
W 1| wosoar o any {
P = We make money easy.
] . oy Ged 13
@ O Omen 5 From knowing where you stand to seeing where you're going,
' from quickly paying a bill to splitting lunch with some friends,
i g o e 15. from signing up in a minute to searching back over the years,

IUNOAT D ALY

We're building the first smart bank, bwit from the ground up to

T — 7 deliver intelligent, ethical banking on your smartphone.
due Dorwions Arport 7

An easier way {1220 B
to pay. o

\AJ st Arnorn \ NS E b et et e no eton fAan
were not Qper Or pusiness JUSE Yel QuUtlLitsa 'V‘.A.’{Y SLep <..|r\’-'rl'd

S

e) After months of work (and a bake-off or two) we're officially a bank

And we couldn't be happier

3 More than skin deep

41

Chapter 2

What are Microservices?

“loosely coupled service oriented
architecture with bounded contexts”

Adrian Cockcroft, GOTO Aarhus 2014

“the first post-devops architectural style”

Neal Ford

replaceable component architectures

Dan North

characteristics of microservices

characteristics of microservices

this Is the problem

\

“It is perfectly true, as philosophers say, that life
must be . But they forget the
other proposition, that it must be lived forwards.”

Saren Kierkegaard

* STEP INTO THE MYST 'WORLD OF THES

lan’

P

A —
o

' | am—
=
o o

'I'IIE
"ENDLESSLY -
'BIFURCATING
TROUSERS

~OF \
REAI.ITY

.
&
. 3
“
.
-
’ "_‘
3 .
* 8
‘.i
.
-
v\“
A
-~ TR
.I.
.

e N)] ¢
. -A—-ﬁtuﬁah&m— -\‘-o..&"'-“o‘““‘

History

The lawful good product owners of
the publishing house had long lived
in awe and fear of their publishing
systems.

In awe, for they had made a
tremendous amount of Gold, but in
fear of the time taken to change
them, their slowness and their
fragility.

A messenger was sent to fetch help
from a distant land famed for it's
mighty wizards. You have taken up
the challenge...

50

1.

You must save the product owners by
rebuilding their content delivery
system. You start off the project. In
the course of discussions you
discover that your goals are three
fold:

1. improve availability
2. improve performance
3. reduce the cost of delay

An Enterprise Architect approaches
and addresses you.

You may use:

Summon Walking Skeleton turnto 4

Analysis Paralysis turn to 3

If you have none of these you will
have to draw your sword and fight
(turn to 178)

3.

You cast Analysis Paralysis at the
Enterprise Architect.

“Foolish young adventurer” says the
architect, “we follow the evolutionary
school of architecture and we shall
have none of the lawful-evil ways of
waterfall”.

The last thing you see before
everything goes dark is the architect
incanting in a strange voice.

You have died. Turn to page 1.

52

1.

You must save the product owners by
rebuilding their website. You start off
the project. In the course of
discussions you discover that your
goals are three fold:

1. improve availability
2. improve performance
3. reduce the cost of delay

An Enterprise Architect approaches
and addresses you.

You may use:

Summon Walking Skeleton turnto 4

turn to 3

Analysis Paralysis

If you have none of these you will
have to draw your sword and fight
(turn to 178)

4,

Your Walking Skeleton Coalesces in a ooo
cloud of noxious gasses and solidifies
as a java dropwizard application.

You reach into your backpack and
deploy the content store. Your
walking skeleton reaches out it's

skeletal arms and grabs armfuls of
raw xml.

Would you like to:

Transform the xml inside S3
the skeleton turn to 6

Use a magic box turnto 5

5.

You throw the magic box in between
the walking skeleton and the content
store.

A villager approaches and exclaims: v
“this beautiful content | see in front
of me seems to take an awful long
time to get here” \
You must somehow make the

content

content arrive faster.

If you have a http cache in your
inventory, you may use it now.

S3

Cache in between S3
and content turnto 10

Cache in between
skeleton and content turn to 33

6.

The skeleton gurgles, grunts and
then doubles in size.

A villager approaches and exclaims: 4 = -
“this beautiful content | see in front g

N ~ P
* _—
P

of me seems to take an awful long
time to get here”

LA 1 AN ' [
W L RN T e

i e
. . i |‘ ‘,,/,7’./ i .I'f’/'- f .,AA
K
1f]v?:'f/ N ?"."‘

s
P
l/
5
wile N
Tr

-

i

’

‘
d

A

/ ;‘ i Iy
7// e ATNINGI 7
1t Y i L
' : | " f'r"‘

You try to add a cache into the 1 ¥
skeleton’s bony skull. First you cast A\ Y "'*:':ﬁ' i !i \ 7
sticky sessions. With a splash it b (Wil
rebounds, soaking you in the stench

of the unscalable.

Desperately, you try terracotta and
then the oracle of coherence.
Nothing seems to work. The murky
substances overwhelm you.

You have died. turn to page 1.

10.

The cache causes the content load
times to drop from 300ms to 150ms.

The villager says “this wonderful
content is now arriving more swiftly
than even the knight-messengers of
the Empress”.

The villagers are happy but all too
soon, all is not well for the content
has a long tail. You must work out
how to refresh the content when it
changes.

You can either:

Refresh the content when

it appears from the ether turn to 150

Trust that it will be fast
enough on first view turn to 22

57

22.

The tail is just too long. When
villagers or merchants try to use the
content it is just too slow to arrive.

The amount of Gold diminishes and
over the years the village fades into a
forgotten hamlet, then to a legend
and a myth.

You have died, turn to page 1.

58

150.

Content trickles into the store. You
keep up by listening for the new
content and casting “wget” on the
cache to keep it refreshed.

New types of content appears -
content the villagers have never seen
before. Content the walking skeleton
is unable to combat.

Fortunately, through Continuous
Delivery you are able to keep up with
the changed content but the cache
doesn’t. The cache becomes stale.

How will you keep your delivery
continuous?

cast cache shards turn to 255

If you are unable to shard the cache
turn to page 48

59

33.

The HTTP cache has an instant effect.
Latency drops from 300ms to 10ms.

Changes to the content mount up.
Every time one of the lawful-good
researches publishes something, the
cache must be refreshed. Every time
the skeleton changes it's appearance,
the cache must be refreshed.

The villagers need you to do
something. Will you:

Suffer the long tail turn to 22

Refresh the cache on API
and content changes turn to 150

60

.T
oy
-
- 3
[|
-
Jom-
=
Tomo
—
0.
‘!
P
&

Qli.‘vl.n“an. e

= o :
»
: - . L U R T
. .n \ - L w4 -
- . . .

e

29

61

characteristics of microservices

characteristics of microservices

organised around business capabilities

A capability is a combination of people, processes, systems
that provides value to customers (internal or external)

The what of the business, not the how

property company

67

Insurance company

home

motor

life

/ \
N— B

insurance company

home motor life

Each capability decomposed into smaller sub-domains
based on your and cross-functional needs

How big are they?

“objects should be no bigger than my head”

AND WHILE | HAVE A GIANT HEAD, ITS NOT FULL OF MUCH
STUFF SO THATS OK...

N
o
/g N
Q).
~ ~

AS WE CHUNK UP DOMAINS, EACH DOMAIN SHOULD BE

characteristics of microservices

organised around business capabilities

characteristics of microservices

"
Q... “Qm
>
¢ AR)

“be of the web, not behind the web”

lan Robinson, quthor, REST in Practice

characteristics of microservices

characteristics of microservices

opS

4)
E0 €D
(O (OO
Be) Be
(O (OO

_ J

1 developers

8888
8888

THE BUSINESS

opS

88
38

8888 | -
8888

/
\}
'.

&5

| developers -
. h

>, .
. |
o

R THE BUSINESS
38)
sl

Insurance company

Insurance company

separate lines of business

home

motor

life

separate lines of business

home motor life

cross-functional teams delivering lines of business

8888
5888

characteristics of microservices

characteristics of microservices

military

Share tools, don't enforce standards

MAKE IT EASY TO DO THE RIGHT THING

CassJMeter

[Aminator | Archaius

ol
IR,

ANI E&

NIMATION

Curator

Netflix-Graph

INDEPENDENT

characteristics of microservices

characteristics of microservices

X0

J

L

monolith - single database microservices - application databases

Capabilities own their own data

(can be cached elsewhere with
appropriate policies)

what about transactions in this model?

Blog About Speaking Archives Contact

Follow Nathan on

Twitter
git GitHub
[LinkedIn
£ Blog RSS

« Early access edition of my book is available | Main | My talks at POSSCON »

How to beat the CAP theorem

] THURSDAY, OCTOBER 13, 2011

The CAP theorem states a database cannot guarantee consistency, availability, and
partition-tolerance at the same time. But you can't sacrifice partition-tolerance (see
here and here), so you must make a tradeoff between availability and consistency.
Managing this tradeoff is a central focus of the NoSQL movement.

Consistency means that after you do a successful write, future reads will always take
that write into account. Availability means that you can always read and write to the
system. During a partition, you can only have one of these properties.

Systems that choose consistency over availability have to deal with some awkward
issues. What do you do when the database isn't available? You can try buffering

‘toc far |ai i ol Incing §) oc if I ‘) I th]

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

“As bad as anything else”

Beating the CAP Theorem Checklist

Your () tweet () blog post () marketing material () online comment
advocates a way to beat the CAP theorem. Your idea will not work. Here is why
it won't work:

you are assuming that software/network/hardware failures will not happen
you pushed the actual problem to another layer of the system

your solution is equivalent to an existing one that doesn't beat CAP
you're actually building an AP system

you're actually building a CP system

N N S N N S

you are not, in fact, designing a distributed system

Specifically, your plan fails to account for:

latency is a thing that exists

high latency is indistinguishable from splits or unavailability
network topology changes over time

there might be more than 1 partition at the same time

split nodes can vanish forever

a split node cannot be differentiated from a crashed one by its peers
clients are also part of the distributed system

T " N]

C—_— C—_ R S— t—_— S—_— S—

http://ferd.ca/beating-the-cap-theorem-checklist.ntm|

109

http://ferd.ca/beating-the-cap-theorem-checklist.html

characteristics of microservices

characteristics of microservices

e
(—
[=—]
=
>

=

Fast Feedback

-——-e— — - -

compile, unit acceptance integration user acceptance performance
and test test test test
functional test

Bt it pe—()
e

More Confidence

deploy to
production

113

characteristics of microservices

“It pushes the
into the infrastructure”

Martin Fowler

116

/

Release It!
Design and Deploy

r’

Michael T. Nygard

“Every socket, process, pipe, or remote
procedure call . Even
database calls [...]"”

M. Nygard, “Release It”

Chapter 3
Some (un)expected consequences

microservices should allow us to go as
“fast as possible”

be cheap to replace

be deployable on demand

be resilient on imperfect networks

but it's not as simple as that

MUST BE
ACCOMPANIED
BY AN
ADULT

42"
MINIMUM

https://www.flickr.com/photos/futurowoman/2923992303

120

https://www.flickr.com/photos/futurowoman/2923992303

Monitoring Organisational Structure

Deployment INntegration

Testing Architectural Safety

How big are they?

How many can you Ssupport?

Hovwbtg-arether?

How many can you Ssupport?

Consider a single application - its a website, lets call it A

123

we want to get A into production and since we are hipsters we are going to practice continuous delivery - we will have a full
automated build pipeline

compile, unit acceptance integration
and test test
functional test

——tptfpei)
e HET

deploy to
production

124

we want to get A into production and since we are hipsters we are going to practice continuous delivery - we will have a full
automated build pipeline

Tappety tap

compile, unit acceptance integration
and test test
functional test

——tptfpei)
e HET

deploy to
production

124

we want to get A into production and since we are hipsters we are going to practice continuous delivery - we will have a full
automated build pipeline

Tappety tap

compile, unit acceptance integration
and test test
functional test

——tptfpei)
e HET

deploy to
production

124

How many environments do we need?

How many environments do we need?

compile, unit acceptance integration
and test test
functional test

Bt
T B
X

deploy to
production

OK, so we are going to be cool and use microservices

127

and we might as well call them something interesting

webapp customers

128

and they have a dependency on one another...

o —

webapp customers

How do we traditionally make sure that new versions of the
services work with eacn other?

L et me illustrate this

131

git push origin master

131

git push origin master

131

git push origin master

131

git push origin master

131

git push origin master

131

git push origin master

131

What should V2 of the blue app be tested against here

132

This is in production, so presumably we should test against this?

133

134

git push origin master

git push origin master

134

git push origin master

git push origin master

134

git push origin master

git push origin master

134

git push origin master

git push origin master

134

git push origin master

git push origin master

134

git push origin master

git push origin master

134

I'm sorry Dave, I can’'t let you do that

136

136

Locks == Delay

dihaZon
web services™

2 services

1
\"

A environments

2 services

2 services
A

2 services

A
>600

the death of the

integration environment

144

1972 - Dennis Ritchie invents a powerful gun that shoots both forward
and backward simultaneously. Not satistied with the number of deaths

and permanent maimings from that invention he invents C and Unix.

http.//james-iry.blogspot.com.au/2009/05/brief-incomplete-and-mostly-wrong.htm|

144

A capability is a combination of people, processes, systems
that provides value to customers (internal or external)

The what of the business, not the how

The problem with projects

& &
i 88
a%s g
8 8

The problem with projects

g 8
g 828
a%s g

gg ©

&
l‘l

The problem with projects

2 8
g 2.8

2 & ‘x “ i
'y 3,8
l‘l

The problem with projects

g 8
g 828
a%s g

gg ©

&
l‘l

The problem with projects

8 &
832

34,3
l‘l
l‘l

If you aren’t really careful with your API design

your beautiful microservices end up in a tangled, coupled mess

6 week periods of “hardening”

Feature Feature
starts deployed

dev J
R _
_regression testing
nerformance testing

iteration iteration || iteration
deployment tests

53 | 57

- >

cycle time

deploying everything all at once

write
spec

write
code

test [release

1

& 82
i

3 ‘ &3«5;:}7
‘ @

&:‘: ‘

— —

B e,7 & F

) o

3" g W

Without deploying into production,
inventory is built up - inventory costs
money and the more we have the more
risky our deployments

...THAT NONITOR (DDE
THAT DEPLOYS TOOLS
THAT BLILD TOLS FOR

https.//xkcd.com/1629/

TERRY
PRATCHETT

THEKEYBUARD

—

PRAI

e

ETT

- --’ql s
¢ N e
E .

' : "
IR e \
0’
.
L

The Boojam!

Large organisations tend to be “functionally split” for efficiency reasons
Many use scrummerfall or project based teams
Throw away integration testing? Are you made?

We suddenly need a whole new set of skills Design for failure
Architectural safety

/00keeper?!?

Chapter 4
Facing these consequences

It is not possible to get the benefits
of microservices without serious organisational change

‘...0rganizations which design systems ... are constrained to produce
designs which are copies of the communication structure of those

organizations”
Melvyn Conway, 1968

The mirroring phenomenon is consistent with two rival causal mechanisms. First,
designs may evolve to reflect their development environments. In tightly-coupled
organizations, dedicated teams employed by a single firm and located at a single site
develop the design. Problems are solved by face-to-face interaction, and performance
“tweaked"” by taking advantage of the access that module developers have to
information and solutions developed in other modules. Even if not an explicit
managerial choice, the design naturally becomes more tightly-coupled.

By contrast, in loosely-coupled organizations, a large, distributed team of volunteers
develops the design. Face-to-face communications are rare given most developers
never meet. Hence fewer connections between modules are established. The
architecture that evolves is more modular as a result of the limitations on
communication between developers.

159

"Exploring the Duality between Product and Organizational Architectures : A Test of the “Mirroring” Hypothesis"
http.//www.hbs.edu/faculty/Publication%20Files/08-039_1861e507-1dc1-4602-85b8-90d71559d85b.pdf

tightly-coupled organizations = the design becomes more tightly-coupled.

loosely-coupled organizations = the architecture is more modular

Lines of
business

Lines of
business

Value streams

Value streams

163

163

each team

owns one or more services

~710-20

~710-20
~160-200

~710-20
~160-200

multiples thereof

Thomas). Allen, 1977

166

Probability of
weekly interaction

0.30 s"""”-‘;
0.25 |
‘ The effect of distance on communication
0.20 |
0.15 |
| x X
o1

0.05

0 10 20 30 40 50 60 70 80 90 100 m

167

co-locate as much as possible

take advantage of serendipitous conversations

169

Good Monitoring

\

e e e e O
e w % w w 0

169

Good Monitoring

\ Fast Remediation

e w % w w 0

169

Good Monitoring

\ Fast Remediation

e w % w w 0
Bttt el
BNttt el

QA

169

Test in production

170

170

SEMANTIC MONITORING

-

- g o g

- -

-
\ PR R

& T —) ———

- A ——— e e e bk k.

170

Customer
Service

Web Shop

171

Customer
Service

Web Shop

Expectations

171

oef ageeal () Node ~ |
el anlnds"Pety /e ad e/ 199 sl el Llong " Long"n ">
Sood
Alnk rele"stylesheet” hrefs"/stonic/comon. Cid" typde"tiat/css” />
AAink releTstyleireet” hefe| CSFOrULIplayTypd | typee " taxt/Cas”
ato http eguive refreah” comterts"N° />
< head
Body -
{ coment(nilon) |
- oy
L
)

private dof contert(builds: Lise[Bulld)): Elem » |
disgloyType match |
s “single” o adive | Bl mdp(build « aslTadle(build)) |} < @ivs
ekt "ot - |
Lf (bullds tengrh == 1) {
dive [AL mop(Butld « asladlebulld))) <divm
)} else |
il Closs "Bl lan s BAlas map(build «» BeATdToMal (Build)) ol
)
}

ose _ oo ol ROt Lo [A LEs map(eAld o Bl LEToMel Ot b)) Jeruls

)
)

private oof ailadlebuild. Satld): Elem » |
<tatle clakiel "Build © « ild getSestud nome tolomerCase)>
<r vl ighe"nlddle” align"Cemter>
<@ | Uinklealabulld))t
P ¥
< tebles

>

Customer
Service

171

oof ageeal () Node ~ |
el anlnds"Pety /e ad e/ 199 sl el Llong " Long"n ">
ool
Alnk rele"stylesheet” hrefs"/stonic/comon. Cid" typde"tiat/css” />
AAink releTstyleiteet” hefe| CSSPOrULIplayTypd | type " taxt/Css”™ />
ato http eguive refreah” comterts"N° />
< meod:
Body -
{ coment(Builion) |
- Sody
L
)

private dof contert(builds: Lise[Bulld)): Elem » |
disgloyType match |
s “single” o adive | Bl mdp(build « aslTadle(build)) |} < @ivs
ekt "ot - |
Lf (bullds tengrh == 1) {
dive [AL mop(Butld « asladlebulld))) <divm
)} else |
il Closs "Bl lan s BAlas map(build «» BeATdToMal (Build)) ol
)
}
ose _ own ol oIt Los [A Lo map(nAld o Bul LEToal (il 8E)) Sl
)
)

private oof ailadlebuild. Satld): Elem » |
<tatle clakiel "Build © « ild getSestud nome tolomerCase)>
<r vl ighe"nlddle” align"Cemter>
<@ | Uinklealabulld))t
P ¥
< tebles

Customer
Service

171

Consumer Driven Contracts

oef ageeal(Node -

el wnlads"reep
el
<Aink rels
«link rels

< /hecd
Body -
{ coment (i
- oady
. A
)

private dof Contert

{
o ad 0/ 199)t el Lo "n” LlangTn>

Prafe " /Seon i C/0ommon . Cid" typle " tiat/ (55
et CAAPOrULIpLlayType | typee Tt/ Css

stylews

stylew

E 0 http eguive "refreah’ comterts 3

&))

(hwilds: Lisa[Bulld)): Elem = |

disgloyType match |

ase “sirgle
<ate imort

» afive | BAlSs mdp(build > adldletuild)) | < ®iws

» 4

Lf (bullds. tength «« 1) |

div> [B
)} else |
‘ Wil class-
ose _ » il ¢
)
)

10 sop(Butld o asladleulld))) <die

1

BATa] DAL map(build «r BeALETOMAl (Bl ld)) ol

FORae "0t 1o o[Bl sap(ntld oo bl LaTotml (i ba)

private sof aiTadle(tuild. Sald): Elem » |
adtle adis] "wild 7+ dild getSedtud name tolomerCase >

<tr wol
s
< tbler

Lo "mlddle” aligne"cemter’>
Uinkletet o bulld) Jotds

)

e/ols

Customer
Service

171

production != live

4 | , vy
- //r - ,h%//éﬁﬂ //r\}/y ’ :/;ynzl/(/ to | /r lers

Wh F"Kg.
\Q ,,
X

blue / green deploys

-~
r: o
<

S
'. '\“ J..a‘, -{

~
\
o

CONTINUOUS

DELIVERY
canary releases

Jez HUMBLE
DAVID FARLEY

Infrastructure as code

Foreword by Martin Fowler

My hypothesis is that you can use organisational
boundaries to reason about which testing patterns to apply
and which integration patterns to use

The “chunking up from microservices to

teams to value streams to lines of

business to organisations" practice ™
onion~®

4 rmght need a better name for this
O W N W N

between organisational boundaries

typically requires: Low change rate

.. High stability

Semantic Versioning

Tolerant Reader

between business capabilities

Higher change rate

Lower stability

Semantic Versioning
Contract Testing
Tolerant Reader

between teams

Higher rate of change

Lower stability

Semantic Versioning
Contract Testing
Tolerant Reader

within teams

Highest rate of change

Lower stability

Conversational change

Tolerant Reader

FINAL THOUGHTS

ok WwWnN =

~

0

\O

W =0

No bk

RU
RU
RU
RU
RU
RU

e of Modularity: Write simple parts connected by clean interfaces.

e of Clarity: Clarity is better than cleverness.

e of Composition: Design programs to be connected to other programs.

e of Separation: Separate policy from mechanism; separate interfaces from engines.

e of Simplicity: Design for simplicity; add complexity only where you must.

e of Parsimony: Write a big program only when it is clear by demonstration that nothing

else will do.

RU
RU
RU

e of Transparency: Design for visibility to make inspection and debugging easier.
e of Robustness: Robustness is the child of transparency and simplicity.
e of Representation: Fold knowledge into data so program logic can be stupid and

robust.

RU
RU
RU
RU

e of Least Surprise: In interface design, always do the least surprising thing.

e of Silence: When a program has nothing surprising to say, it should say nothing.
e of Repair: When you must fail, fail noisily and as soon as possible.

e of Economy: Programmer time is expensive; conserve it in preference to machine

time.

RU
RU
RU
RU

e of Generation: Avoid hand-hacking; write programs to write programs when you can.
e of Optimization: Prototype before polishing. Get it working before you optimize it.

e of Diversity: Distrust all claims for “one true way"”.

e of Extensibility: Design for the future, because it will be here sooner than you think.

183

ok WwWnN =

~

0

\O

W =0

No bk

RU
RU
RU
RU
RU
RU

the 17 of UNIX programming

e of Modularity: Write simple parts connected by clean interfaces.

e of Clarity: Clarity is better than cleverness.

e of Composition: Design programs to be connected to other programs.

e of Separation: Separate policy from mechanism; separate interfaces from engines.

e of Simplicity: Design for simplicity; add complexity only where you must.

e of Parsimony: Write a big program only when it is clear by demonstration that nothing

else will do.

RU
RU
RU

e of Transparency: Design for visibility to make inspection and debugging easier.
e of Robustness: Robustness is the child of transparency and simplicity.
e of Representation: Fold knowledge into data so program logic can be stupid and

robust.

RU
RU
RU
RU

e of Least Surprise: In interface design, always do the least surprising thing.

e of Silence: When a program has nothing surprising to say, it should say nothing.
e of Repair: When you must fail, fail noisily and as soon as possible.

e of Economy: Programmer time is expensive; conserve it in preference to machine

time.

RU
RU
RU
RU

e of Generation: Avoid hand-hacking; write programs to write programs when you can.
e of Optimization: Prototype before polishing. Get it working before you optimize it.

e of Diversity: Distrust all claims for “one true way"”.

e of Extensibility: Design for the future, because it will be here sooner than you think.

183

Release It!

Design and Deploy
Production-Ready Software

i

Th@ AF U of "%%
UNIX _ ==
Programmin

Eric S. Raymond é‘ (.

”~
/

ENTERPRISE
INTEGRATION
PATTERNS

GREGOR HouHprl
Bospy WooLl

A-NOWIOIOI “

, a

Tackling Complexity in the Heart of Software

140 IYNA LTS

TAWICY Y TWNIOIKK

CAIIC TN

Foreword by Martin Fowler

vy

. //—f—, . .b”l/t/(‘}/'ll //r‘}/y : /é?na/a to Sotins

DELIVERY

JEz HUMBLE
DAVID FARLEY

Foreword by Martin Fowler

REST in Practice

never done

A DISCWORLD NOVEI

185

never done

“This, milord, is my family's axe. We
St nave owned it for almost nine
e nundred vyears, see. Of course,
sometimes it needed a new blade.
féﬁ* g5 And sometimes it has required a
‘ /,,,,-410?7?;? LR new handle, new designs on the
Ry A VA metalwork, a little refreshing of the
ornamentation . . . but is this not
the nine hundred-year-old axe of
my family? And because it has
changed gently over time, it is still a
pretty good axe, y'know. Pretty

g00d.”

185

the 16th rule of unix programming

The Rule of Diversity

DISTRUST ALL CLAIMS FOR “ONE TRUE WAY”

Thanks!

Thought\Works’

